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Abstract

Explicit expressions of magnetoelectric Green’s functions are obtained for a transversely isotropic medium exhibiting

coupling between the static electric and magnetic fields utilizing the contour integral representation. Four Green’s

functions exist which represent the coupled static electric and magnetic response to a unit point electric or magnetic

charge. The Green’s functions are applied to analyze the inclusion and inhomogeneity problems in an infinite magne-

toelectric medium, and explicit, closed form expressions are obtained for the Eshelby type tensors. The magnetoelectric

Eshelby’s tensors can be readily used in the solution of numerous problems in the mechanics and physics of magneto-

electric solids.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Green’s functions are one of the well-established tools in the solution of numerous problems in the
mechanics and physics of solids. Evaluation and application of elastic Green’s function in isotropic and
anisotropic media are included in the review article of Bacon et al. (1978) and the text of Mura (1987).
Application of Green’s function in condensed matter and solid state physics can be found in Doniach and
Sondheimer (1974) and Rickayzen (1980). The key contributions to the study of elastostatic Green’s
function were made by Freedholm (1900), Lifshitz and Rozentsveig (1947), Kr€ooner (1953), Synge (1957),
Willis (1965), Mura and Kinoshita (1971), and Pan and Chou (1976). Recently, the electroelastic Green’s
functions for a piezoelectric solid were studied by Deeg (1980), Wang (1992), Chen (1993), Dunn (1994),
Dunn and Wienecke (1996), Akamatsu and Tanuma (1997), Michelitsch (1997), Gao and Fan (1998), and
Karapetian et al. (2000).

Most of the previous studies of Green’s functions for a medium with coupled-field behavior focused on
the piezoelectric solid where the elastic and electric fields are coupled. Very limited work has been directed
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toward the analysis of Green’s functions in the magnetoelectric solid where the static electric and magnetic
fields are coupled. Yet the magnetoelectric coupling has both theoretical and practical significance in solid
state physics and materials science. Though first predicted by Pierre Curie, magnetoelectric coupling was
originally thought to be forbidden because it violates time-reversal symmetry, until Laudau and Lifshitz
(1960) pointed out that time reversal is not a symmetry operation in some magnetic crystals. Based on this
argument, Dzyaloshinskii (1960) predicted that magnetoelectric effect should occur in antiferromagnetic
crystal Cr2O3, which was verified experimentally by Astrov (1960, 1961). Since then the magnetoelectric
coupling has been observed in single-phase materials where simultaneous electric and magnetic ordering
coexists, and in two-phase composites where the participating phases are piezoelectric and piezomagnetic
(VanRun et al., 1974; Bracke and Van Vliet, 1981). Agyei and Birman (1990) carried out a detailed analysis of
the linear magnetoelectric effect, which showed that the effect should occur not only in somemagnetic but also
in some electric crystals. Pradhan (1993) showed that an electric charge placed in a magnetoelectric medium
becomes a source of induced magnetic field with non-zero divergence of volume integral. Magnetoelectric
effect in two-phase composites has been analyzed by Harshe et al. (1993a,b), Avellaneda and Harshe (1994),
Nan (1994), Benveniste (1995), Li and Dunn (1998a,b), Li (2000), and Nan et al. (2001). Broadband trans-
ducers based on magnetoelectric effect have also been developed (Bracke and Van Vliet, 1981).

The Green’s functions for the magnetoelectroelastic solid have been studied by several authors. Chung
and Ting (1995) showed that the Green’s function for an elliptic hole or rigid inclusion in an anisotropic
elastic medium can be modified easily for an anisotropic medium with piezoelectric, piezomagnetic and
magnetoelectric coupling by extending the Stroh’s formalism to a ten-dimensional formalism. Kirchner and
Alshits (1996) obtained the fields in a wedge subjected to various boundary conditions in which the an-
isotropic elastic, piezoelectric, piezomagnetic, and magnetoelectric constants show an angular variation.
Liu et al. (2001) obtained Green’s functions for an infinite two-dimensional anisotropic magnetoelectro-
elastic medium containing an elliptical cavity. In this work, we study the Green’s function for a magne-
toelectric solid without piezoelectric and piezomagnetic coupling, which simplifies the analysis considerably
and allows us to obtain the explicit expressions.

Although virtually all magnetoelectric materials of practical significance are piezoelectric-piezomagnetic
composites with inherent electroelastic and magnetoelastic coupling, it is possible to fabricate such com-
posites without macroscopic piezoelectric and piezomagnetic effects by controlling the texture of the com-
posites, because they are forbidden in materials having a symmetry center. This could be accomplished by
randomly mixing piezoelectric and piezomagnetic phases at grain level to achieve center symmetry. In fact,
suppressing the macroscopic electroelastic and magnetoelastic coupling is desirable from the device point of
view, because it suppresses the associated macroscopic stresses and strains, which may complicate magne-
toelectric device design and operation. Explicit expressions for magnetoelectric Green’s function, which
could be used for the analysis of such materials, thus are desirable. In this work we derive the explicit ex-
pressions of magnetoelectric Green’s functions for a transversely isotropic medium exhibiting full coupling
between the static electric and magnetic fields utilizing the contour integral. The Green’s functions are then
applied to analyze the magnetoelectric inclusion and inhomogeneity problems in an infinite medium, and
explicit, closed form expressions are obtained for magnetoelectric Eshelby’s tensors. The Eshelby’s tensors
serve as cornerstone in the micromechanis modeling of heterogeneous materials with coupled-field behav-
iors, and can be readily used in the solution of numerous problems in the mechanics and physics of heter-
ogeneous solids.

2. Static linear magnetoelectricity

We consider a medium that exhibits linear, static, and anisotropic coupling between the electric and
magnetic fields, with the constitutive equations given by:
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Di ¼ jilEl þ ailHl;
Bi ¼ ailEl þ lilHl;

ð1aÞ

where Di and Ei are the electric displacement and field; Bi and Hi are the magnetic flux and field; jil and lil
are the dielectric and magnetic permittivity; and ail is the magnetoelectric coefficient coupling the static
electric and magnetic fields. In the stationary case where there is no free electric charge and current, electric
displacement and magnetic flux satisfy the Gauss equations,

Di;i ¼ 0;

Bi;i ¼ 0;
ð2aÞ

where the subscript ‘‘,i’’ is used to denote a partial differentiation with respect to xi. The electric and
magnetic fields, on the other hand, can be derived from scalar electric and magnetic potentials,

Ei ¼ �/;i;

Hi ¼ �u;i:
ð3aÞ

While the electric potential / has clear physical interpretation, the magnetic potential u is introduced for
mathematical convenience.

In order to treat the electric and magnetic variables on equal footing, we introduce a short notation,
which is analog of that introduced by Barnett and Lothe (1975) for piezoelectricity. This notation is
identical to conventional indicial notation with the exception that both lower case and upper case subscripts
are used. Lowercase subscripts take on the range 1 ! 3 as usual, while uppercase subscripts take on the
range 1 ! 2, and repeated uppercase subscripts are summed over 1 ! 2. With this notation, the magne-
toelectric field variables take the following forms:

RiJ ¼
Di J ¼ 1;
Bi J ¼ 2;

�
ZJi ¼

Ei J ¼ 1;
Hi J ¼ 2;

�
UJ ¼

�/ J ¼ 1;
�u J ¼ 2;

�
ð4aÞ

and the magnetoelectric moduli are expressed as:

bEEiJMn ¼
jin J ¼ 1; M ¼ 1;
ain J ¼ 1; M ¼ 2;
ain J ¼ 2; M ¼ 1;
lin J ¼ 2; M ¼ 2:

8>><>>: ð4bÞ

It is noted that the uppercase subscript 1 and 2 is reserved for electric and magnetic variables, respectively.
Under this notation, the constitutive equations, Gaussian equations, and gradient equations can be written
as:

RiJ ¼ bEEiJMnZMn; ð1bÞ

RiJ ;i ¼ 0; ð2bÞ

ZJi ¼ UJ ;i: ð3bÞ

It is worthwhile to notice that RiJ , ZMn, UJ , and bEEiJMn are not tensors, and transformation between different
coordinate systems must be performed on individual tensors according to corresponding tensor transfor-
mation laws.
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3. Magnetoelectric Green’s functions

3.1. Contour integral representation

The magnetoelectric Green’s functions GMRðx� x0Þ are defined through the following partial differential
equation

bEEiJMnGMR;niðx� x0Þ þ dJRdðx� x0Þ ¼ 0; ð5Þ

where dðx� x0Þ is the three-dimensional Dirac delta function, and dJR is the generalized Kronecker delta.
They have the following physical interpretation:

G11ðx� x0Þ: the electric potential at x due to a unit point electric charge at x0;
G12ðx� x0Þ: the electric potential at x due to a unit point magnetic charge at x0;
G21ðx� x0Þ: the magnetic potential at x due to a unit point electric charge at x0;
G22ðx� x0Þ: the magnetic potential at x due to a unit point magnetic charge at x0.

Note that the magnetic charge, or magnetic monopole, is introduced for mathematical convenience, which
simplifies the analysis of magnetoelectric inclusion and inhomogeneity problems, as we show later on.

In order to determine the magnetoelectric Green’s functions GMRðx� x0Þ, we take the Radon integral
transform (Gel’Fand et al., 1966), ~ff ðz; aÞ ¼

R R
z�x¼af ðxÞdSðxÞ, on Eq. (5) (also see Bacon et al., 1978; Deeg,

1980; Dunn, 1994),Z Z
z�x¼a

½bEEijMnGMR;niðx� x0Þ þ dJRdðx� x0Þ
dSðxÞ ¼ 0; ð6Þ

where the transform space variables z and a are vector and scalar, respectively, and the integration is
performed over the infinite plane z � x ¼ a. Denoting the Radon transform of Green’s function by eGGMR, and
using the following properties of the Radon transform,Z Z

z�x¼a

f ðx� x0ÞdSðxÞ ¼ ~ff ðz; a � z � x0Þ;

Z Z
z�x¼a

f;iðxÞdSðxÞ ¼ zi
o ~ff ðz; aÞ

oa
;

Z Z
z�x¼a

dðxÞdSðxÞ ¼ dðaÞ;

we can rewrite Eq. (6) as

bEEiJMnzizn o2 eGGMRðz; a � z � x0Þ
oa2

þ dJRdða � z � x0Þ ¼ 0: ð7Þ

Multiplying the inverse of KJMðzÞ ¼ bEEiJMnzizn at both sides of Eq. (7), we obtain

o2 eGGMRðz; a � z � x0Þ
oa2

¼ �K�1
MRðzÞdða � z � x0Þ: ð8Þ
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Taking the inverse Radon transform

f ðxÞ ¼ � 1

8p2

ZZ�
jzj¼1

o2 ~ff ðz; aÞ
oa2

" #
z�x¼a

dSðzÞ ð9Þ

on Eq. (8), we obtain

GMRðx� x0Þ ¼ 1

8p2

ZZ�
jzj¼1

K�1
MRðzÞd½z � ðx� x0Þ
dSðzÞ: ð10Þ

Setting x� x0 ¼ jx� x0jt, where t is the unit vector along x� x0-direction, and utilizing the property of
Dirac delta function, we obtain

GMRðx� x0Þ ¼ 1

8p2jx� x0j

ZZ�
jzj¼1

½K�1
MRðzÞdðz � tÞ
dSðzÞ: ð11Þ

The relationship between vectors z and t is shown in Fig. 1, with z
 lies in the plane m–n normal to t, i.e.,
z
 � t ¼ 0, and hðz
Þ ¼ p=2. Utilizing the property of Dirac delta function again, we can rewrite Eq. (11) as

GMRðx� x0Þ ¼ 1

8p2jx� x0j

I
jz¼1j

K�1
MRðz
Þdxðz
Þ: ð12Þ

Note that jzj ¼ 1 in the integral represents a unit circle, which is the intersection of the unit sphere with
plane m–n, as shown in Fig. 1. It is analogous to the contour integral obtained by Synge (1957) for an-
isotropy elasticity, and that obtained by Deeg (1980) for piezoelectricity. In general, it needs to be evaluated
numerically.

3.2. Explicit expressions for transversely isotropic media

Now we consider a transversely isotropic medium, characterized by dielectric constants j11 ¼ j22

and j33, magnetic constants l11 ¼ l22 and l33, and magnetoelectric constants a11 ¼ a22 and a33; all other

Fig. 1. Relationship between vectors t, z, and z
.
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material constants are zero. The 2� 2 matrix KJM for the transversely isotropic medium can be expressed
as

KJM ¼ j11ðz21 þ z22Þ þ j33z23 a11ðz21 þ z22Þ þ a33z23
a11ðz21 þ z22Þ þ a33z23 l11ðz21 þ z22Þ þ l33z

2
3


 �
ð13Þ

and its inverse can be represented by

K�1
JM ¼ LJM

g
¼ 1

g
l11ðz21 þ z22Þ þ l33z

2
3 �a11ðz21 þ z22Þ � a33z23

�a11ðz21 þ z22Þ � a33z23 j11ðz21 þ z22Þ þ j33z23


 �
; ð14Þ

with

g ¼ ðj33l33 � a233Þ½A1ðz21 þ z22Þ þ z23
½A2ðz21 þ z22Þ þ z23
 ð15Þ

and

A1 ¼
2a11a33 � j33l11 � j11l33 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj33l11 þ j11l33 � 2a11a33Þ2 � 4ða211 � j11l11Þða233 � j33l33Þ

q
2ða233 � j33l33Þ

;

ð16aÞ

A2 ¼
2a11a33 � j33l11 � j11l33 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj33l11 þ j11l33 � 2a11a33Þ2 � 4ða211 � j11l11Þða233 � j33l33Þ

q
2ða233 � j33l33Þ

:

ð16bÞ

To simplify the evaluation of Green’s functions, we assume the source point is located at the origin,
x0 ¼ ð0; 0; 0Þ, and the observing point is lying in the x1–x3 plane, x ¼ ðx1; 0; x3Þ, with tan h ¼ x1=x3. Ex-
pressions for any other source and observation points can be easily obtained from the transversely isotropic
symmetry of the medium. For such configuration, the intersection between the unit sphere jzj ¼ 1 and the
plane m–n is a unit circle represented by g2

1 þ g2
2 ¼ 1, with g3 ¼ 0 corresponding to the plane m–n; see Fig. 1.

With no loss of generality, g2 is chosen so as to coincide with a unit vector in the x2-direction. Thus we have

z1 ¼ g1 cos h; z2 ¼ g2; z3 ¼ �g1 sin h: ð17Þ

After introducing a complex variable f ¼ g1 þ ig2 ¼ eix, we obtain

g1 ¼
f þ 1=f

2
; g2 ¼

f � 1=f
2i

; dx ¼ df
if

: ð18Þ

We can then express the integrals in Eq. (12) in terms of complex variable f, and evaluate them using
Cauchy’s residue theorem. With those transformation and when h 6¼ 0, g can be written as

g ¼ ðj33l33 � a233Þ sin
4 h

16f4
ð1� A1Þh1ðfÞð1� A2Þh2ðfÞ; ð19Þ

with

hiðfÞ ¼ f4 þ 2Bif
2 þ 1; Bi ¼

Ai cos2 h þ sin2 h þ Ai
ð1� AiÞ sin2 h

: ð20Þ

It is noted that if f is a root of hiðfÞ ¼ 0, so are �f, 1=f, and �1=f, so in general, there are two roots, �vi,
with moduli less than unity, and two roots, �bi, with moduli greater than unity. Eq. (19) can then be
rewritten as
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g ¼ ðj33l33 � a233Þ sin
4 h

16f4
ð1� A1Þð1� A2Þðf2 � v2

1Þðf
2 � b2

1Þðf
2 � v2

2Þðf
2 � b2

2Þ: ð21Þ

Substituting Eq. (21) into Eq. (12), we obtain

GMRðx� x0Þ ¼ C
I
jz¼1j

f3LMRðfÞ
ðf2 � v2

1Þðf
2 � b2

1Þðf
2 � v2

2Þðf
2 � b2

2Þ
df; ð22Þ

with

LMRðfÞ ¼
1

4f2

ð1þ f2Þ2ðl11 cos
2 h þ l33 sin

2 hÞ � ð1� f2Þ2l11; MR ¼ 11

�ð1þ f2Þ2ða11 cos2 h þ a33 sin2 hÞ þ ð1� f2Þ2a11; MR ¼ 12

�ð1þ f2Þ2ða11 cos2 h þ a33 sin2 hÞ þ ð1� f2Þ2a11; MR ¼ 21

ð1þ f2Þ2ðj11 cos
2 h þ j33 sin

2 hÞ � ð1� f2Þ2j11; MR ¼ 22

8>><>>: ð23aÞ

and

C ¼ 2

ip2jxjðj33l33 � a233Þ sin
4 hð1� A1Þð1� A2Þ

: ð23bÞ

Notice that the limiting case jvij ¼ jbij ¼ 1 cannot occur because g 6¼ 0 for z 6¼ 0 (Willis, 1965), and the
integrands are never singular on the contour of integration jzj ¼ 1. Now define

tMRðfÞ ¼
f3LMRðfÞ

ðf2 � b2
1Þðf

2 � b2
2Þ
; ð24Þ

which is analytic inside jfj ¼ 1 since jbij > 1, Eq. (22) can be written as

GMRðx� x0Þ ¼ C
I
jz¼1j

tMRðfÞ
ðf2 � v2

1Þðf
2 � v2

2Þ
df ð25Þ

and finally, according to Cauchy’s residue theorem, the Green’s function can be evaluated as

GMRðx� x0Þ ¼ 4

pjxjðj33l33 � a233Þ sin
4 hð1� A1Þð1� A2Þ

tMRðv1Þ � tMRðv2Þ
ðv2

1 � v2
2Þ


 �
: ð26Þ

Expression for h ¼ 0 can be obtained as limiting form of the above expressions (Willis, 1965). Finally, we
note that for isotropic media, in which A1 ¼ A2 ¼ 1, and K�1

MR does not depend on z, we can evaluate the
contour integral in Eq. (12) directly.

4. Magnetoelectric inclusion and inhomogeneity problems

4.1. Magnetoelectric inclusion problem

The magnetoelectric Green’s functions can be used to solve the inclusion and inhomogeneity problems in
a magnetoelectric solid. Adopting Mura’s (1987) terminology, we denote an inclusion as a subdomain X in
an infinite matrix D with the same magnetoelectric moduli bEEiJKl as that of the matrix, but undergoing an
eigenfield ZT

Kl. An inhomogeneity is a subdomain X in an infinite matrix D with a different magnetoelectric
moduli, bEE 0

iJKl, from that of the matrix, bEEiJKl. The eigenfield ZT
Kl in the inclusion, for example, can be caused

by the spontaneous electric polarization and magnetic moment, which occur during a crystallographic
phase transformation. It is that which would occur if X were unconstrained by D. Actual constrained
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magnetoelectric field inside the inclusion is in general a function of material moduli of the matrix, the shape
and orientation of the inclusion, and the distribution of eigenfield in the inclusion. The disturbance field
caused by an inclusion or inhomogeneity is known as the depolarization and demagnetizing field.

With the presence of an eigenfield ZT
Kl, the constitutive equation and equilibrium equation for the in-

clusion need to be rewritten as

RiJ ¼ bEEiJMnðZMn � ZT
MnÞ ð27Þ

and bEEiJMnZMn;i ¼ bEEiJMnZT
Mn;i: ð28Þ

From Eq. (28), it is found that bEEiJMnZT
Mn;i functions as electric charge and magnetic monopole. WhilebEEiJMnZT

Mn;i is finite within inclusion X, it behaves as a delta function across inclusion surface oX, which is
equivalent to a thin layer of concentrated charges around oX, representing a jump in RT

iJ ¼ bEEiJMnZT
Mn across

this boundary, ½RT
iJ 
. The overall effect, therefore, is represented by the additional flux acting on X over its

boundary oX, qJ ¼ ni½RT
iJ 
 ¼ �niRT

iJ , where ni is the unit surface normal pointing outward. The resulting
electric and magnetic potentials in the infinite body D are then produced by bEEiJMnZT

Mn;i distributed within
inclusion X, and the flux qJ ðxÞ acting upon inclusion surface oX,

UMðxÞ ¼
Z Z
oX

GMJ ðx� x0ÞRT
iJ ðx0Þniðx0ÞdSðx0Þ �

Z Z Z
X

GMJ ðx0 � x0ÞRT
iJ ;i0 ðx0ÞdV ðx0Þ; ð29aÞ

which can be simplified by Gauss theorem,

UMðxÞ ¼ �
Z Z Z

X

GMJ ;iðx� x0ÞRT
iJ ðx0ÞdV ðx0Þ: ð29bÞ

The magnetoelectric field can then determined to be

UM ;nðxÞ ¼ �
Z Z Z

X

GMJ ;inðx� x0ÞRT
iJ ðx0ÞdV ðx0Þ: ð30Þ

From the analysis we find that although the magnetic charge, or magnetic monopole, does not exist, it can
be conveniently used to represent the discontinuity of magnetic moment at the inclusion boundary, thus
help to solve the inclusion problem in a magnetoelectric medium.

In order to determine the magnetoelectric field due to the eigenfield in a inclusion from Eqs. (29a), (29b)
and (30), we need the derivatives of Green’s functions. To this end, we differentiate Eq. (10) to obtain

GMR;iðx� x0Þ ¼ 1

8p2

ZZ�
jz¼1j

ziK�1
MRðzÞd

0½z � ðx� x0Þ
dSðzÞ ð31Þ

and

GMR;inðx� x0Þ ¼ 1

8p2

ZZ�
jz¼1j

ziznK�1
MRðzÞd

00½z � ðx� x0Þ
dSðzÞ: ð32aÞ

Defining r2
x ¼ o2=oxs oxs, and taking into account the fact that zszs ¼ 1, we can rewrite Eq. (32a) as

GMJ ;inðx� x0Þ ¼ 1

8p2
r2
x

ZZ�
jzj¼1

ziznK�1
MJd½z � ðx� x0Þ
dSðzÞ; ð32bÞ
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with which Eq. (30) can be rewritten as

UM ;nðxÞ ¼ � 1

8p2

ZZ�
jzj¼1

ziznK�1
MJr2

x

Z Z Z
X

RT
iJ ðx0Þd½z � ðx� x0Þ
dV ðx0ÞdSðzÞ: ð33Þ

Eq. (33) is valid for any arbitrary material symmetry, inclusion shape, and eigenfield distribution.

4.2. Magnetoelectric Eshelby’s tensors

To carry on the analysis, let us consider a uniform eigenfield in an ellipsoidal inclusion, specified by

x01
a1

� �2

þ x02
a2

� �2

þ x03
a3

� �2

6 1; ð34aÞ

where a1, a2, and a3 are the dimensions of the inclusion in the x01-, x
0
2-, and x

0
3-directions, respectively.

Making the following scaling, s0i ¼ x0i=ai (no summation on i), we can rewrite the ellipsoidal equation (34a)
as

s021 þ s022 þ s023 6 1; ð34bÞ
with which we obtainZ Z Z

X

RT
iJ ðx0Þd½z � ðx� x0Þ
dV ðx0Þ ¼ RT

iJ

a1a2a3
l

Z Z Z
s0 6 1

d½s � ðs � s0Þ
ds01s
0
2s

0
3; ð35Þ

where s ¼ k=l is a unit vector in the direction of ki ¼ aizi (no summation on i). To evaluate the integral in
Eq. (35), let us consider a point x inside the inclusion so that jsj6 1, and write s0 ¼ Tuþ Qs, with u � s ¼ 0,
and Q ¼ s � s; see Fig. 2. Eq. (35) is then reduced toZ Z Z

X

RT
iJ ðx0Þd½z � ðx� x0Þ
dV ðx0Þ ¼ RT

iJ

a1a2a3
l

Z Z Z
js0 j6 1

d½�Tsiui
ds01 s
0
2s

0
3: ð36Þ

Fig. 2. Relationship between vectors s, s, and T.
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Thus the volume integral over js0j6 1 is reduced to the integral over a plane circular region of radiusffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðs � sÞ2

q
perpendicular to s,Z Z Z

s0 6 1

d½�Tsiui
ds01s
0
2s

0
3 ¼

Z 2p

0

Z ffiffiffiffiffiffiffiffi
1�Q2

p

0

T dT d- ¼ pð1� Q2Þ ¼ p 1

"
� z � x

l

� �2
#
: ð37Þ

With Eq. (37), the magnetoelectric field inside the inclusion is reduced to

UM ;nðxÞ ¼
a1a2a3
4pl3

RT
iJ

ZZ�
jzj¼1

ziznK�1
MJ dSðzÞ; ð38Þ

which does not depend on the position x, and thus, is uniform inside the inclusion, valid for ellipsoidal
inclusions embedded in a magnetoelectric medium with any anisotropy. The Eshelby’s tensor can then be
defined as

ZMn ¼ SMnAbZT
Ab; ð39Þ

with

SMnAb ¼ �
Z Z Z

X

GMJ ;inðx� x0ÞbEEiJAb dV ðxÞ ¼ a1a2a3
4pl3

bEEiJAb ZZ�
jzj¼1

ziznK�1
MJ dSðzÞ: ð40Þ

By the following variable transformation, dni ¼ ai dzi=l (no summation on i), we obtain

SMnAb ¼
1

4p
bEEiJAb Z 1

�1

Z 2p

0

ziznK�1
MJ dhdn3; ð41Þ

with n1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

3

q
cos h and n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

3

q
sin h. Since ziznK�1

mJ is a homogeneous polynomial, we can use

zi ¼ ni=ai in Eq. (41). Eq. (41) is valid for any material symmetry, and need to be evaluated numerically in
general. A numerical algorithm is given in Li (2000). For spheroidal inclusions embedded in an isotropic
medium, or cylindrical inclusions and penny-shape inclusions embedded in a transversely isotropic me-
dium, we have obtained the following closed form expressions of Eshelby’s tensor:

I Oblate spheroid in an isotropic medium: aa3 ¼ a1 ¼ a2, a > 1

S1111 ¼ S1212 ¼ S2121 ¼ S2222 ¼
1

2

1

1� a2

"
þ a2 tan�1ða2 � 1Þ1=2

ða2 � 1Þ3=2

#
;

S1313 ¼ S2323 ¼
a2

a2 � 1
� a2 tan�1ða2 � 1Þ1=2

ða2 � 1Þ3=2
:

II Sphere in an isotropic medium: a3 ¼ aa1 ¼ aa2, a ¼ 1

S1111 ¼ S1212 ¼ S1313 ¼ S2121 ¼ S2222 ¼ S2323 ¼ 1=3:

III Prolate spheroid in an isotropic medium: a3 ¼ aa1 ¼ aa2, a > 1

S1111 ¼ S1212 ¼ S2121 ¼ S2222 ¼
a½aða2 � 1Þ1=2 � tanh�1ð1� 1=a2Þ1=2


2ða2 � 1Þ3=2
;

S1313 ¼ S2323 ¼
1

1� a2
þ a tanh�1ð1� 1=a2Þ1=2

ða2 � 1Þ3=2
:
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IV Cylindrical inclusion in a transversely isotropic medium: a3 ! 1, a2 ¼ aa1

S1111 ¼ S2121 ¼
aða � 1Þ
a2 � 1

;

S1212 ¼ S2222 ¼
a � 1

a2 � 1
:

V Penny-shape inclusion in a transversely isotropic medium: a3 ! 0, a1 ¼ a2

S1313 ¼ S2323 ¼ 1:

All other components are zero. It is noted that for the material symmetries and inclusion shapes con-
sidered, the Eshelby’s tensor is only a function of inclusion shape aspect ratio, and all the coupling terms
between electric and magnetic fields are zero. In other word, it does not depend on the material properties
of the matrix. Eshelby’s tensor is a very important and well-known concept in micromechanics, and its
extensive applications can be found in Mura (1987) and Nemat-Nasser and Hori (1993). In magnetic
context, it is related to the demagnetizing factor N.

4.3. Inhomogeneity problem

Once the solution for the ellipsoidal inclusion is obtained, the solution for the ellipsoidal inhomogeneity
easily follows. As shown by Eshelby (1957) in the elastic case, the inhomogeneity can be simulated by an
equivalent inclusion. To be specific, consider the infinite solid with moduli bEEiJKl that contains an ellipsoidal
inhomogeneity with moduli bEE 0

iJKl. In the absence of an applied load, the fields in both the inhomogeneity
and the matrix are zero. When subjected to a far-field uniform load R0

iJ , the fields R0
iJ þ Rd

iJ in the inho-
mogeneity can be written as

R0
iJ þ Rd

iJ ¼ bEE 0
iJMN ðZ0

Mn þ Zd
MnÞ ¼ bEEiJMnðZ0

Mn þ Zd
Mn � Z


MnÞ: ð42Þ
In Eq. (42), Z0

Mn is the uniform field that would exist in the absence of the inhomogeneity, and Zd
Mn is the

disturbance of the uniform field due to the presence of the inhomogeneity, or the so-called depolarization
and demagnetizing field. The first right-hand side of the equation represents the fields in the actual inho-
mogeneity; the second one represents the fields in an inclusion of the same shape and orientation as the
inhomogeneity, but with an eigenfield Z


Mn, i.e., an equivalent inclusion. Simulation of the inhomogeneity by
an equivalent inclusion is possible when an appropriate Z


Mn can be found to enforce the second equality of
the equation, which gives

Z

Mn ¼ �H�1

MniJ ðbEE 0
iJAb � bEEiJAbÞZ0

Ab; ð43Þ
with

HiJMn ¼ ðbEE 0
iJAb � bEEiJAbÞSAbMn þ bEEiJMn: ð44Þ

From Eqs. (43), (44), and (39), the concentration factor ACdAb defined by Z0
Cd þ Zd

Cd ¼ ACdAbZ0
Ab for a single

inhomogeneity embedded in infinite matrix easily follows as

ACdAb ¼ �SCdMnH�1
MniJ ðbEE 0

iJAb � bEEiJAbÞ þ ICdAb ¼ ½ICdAb þ SCdMnbEE�1
MniJ ðbEE 0

iJAb � bEEiJAbÞ
�1
: ð45Þ

The concentration factor is a key concept in the micromechanics modeling of the heterogeneous materials,
and is used extensively to predict the effective behavior and analyze the internal field distribution of het-
erogeneous materials. In the case where there is a prescribed eigenfield ZT

Kl in the inhomogeneity, i.e., an
inhomogeneous inclusion, the fields are

R0
iJ þ Rd

iJ ¼ bEE 0
iJMN ðZ0

Mn þ Zd
Mn � ZTMnÞ ¼ bEEiJMnðZ0

Mn þ Zd
Mn þ ZTMn � Z



MnÞ ¼ bEEiJMnðZ0
Mn þ Zd

Mn � Z

MnÞ; ð46Þ
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with which the equivalent eigenfield Z

Mn can be solved to provide the fields inside the inhomogeneous in-

clusion.
The above results for the interior fields can be used to obtain the fields just outside an inclusion or

inhomogeneity by making use of the continuity conditions on ZMn and the jump conditions on UM at the
inclusion–matrix interface (Lin and Mura, 1973; Dunn and Taya, 1993). The fields just outside the inclusion
can be expressed as

Rout
iJ ¼ Rin

iJ þ bEEiJKlð�bEEpQMnZT
MnK

�1
QKnpnl þ ZT

KlÞ; ð47Þ

with KJK ¼ ninlbEEiJKl and the interior fields Rin
iJ obtained by the approach discussed above.

Finally, we discuss some energy calculations. Consider a solid containing an inhomogeneity subjected to
far-field loads niR0

iJ . These loads would result in uniform fields R0
iJ in a homogeneous solid. The total free

energy of the inhomogeneity can be expressed as

W ¼ 1

2

Z
D
ðR0

iJ þ Rd
iJ ÞðU 0

J ;i þ Ud
J ;iÞdV �

Z
S

R0
iJ niðU 0

J þ Ud
J ÞdV

¼ 1

2

Z
D

R0
iJU

0
J ;i dV þ 1

2

Z
X

R0
iJ Z



Ji dV �

Z
S

R0
iJ niðU 0

J þ Ud
J ÞdV : ð48Þ

The interaction energy between niR0
iJ and the inhomogeneity is then

DW ¼ W � W 0 ¼ 1

2

Z
X

R0
iJ Z



Ji dV �

Z
S

R0
iJ niU

d
J dV ¼ � 1

2
R0
iJ Z



JiVX; ð49Þ

with the volume of inhomogeneity VX ¼ ð4=3Þpa1a2a3. The interaction energy is very important in the
studies of ferroelectric or ferromagnetic phase transformation and domain switching.

5. Concluding remarks

We have obtained explicit expressions of the magnetoelectric Green’s functions for a transversely iso-
tropic medium exhibiting coupling between the static electric and magnetic fields utilizing the contour
integral representation. The Green’s function is used to analyze the magnetoelectric inclusion and inho-
mogeneity problems in an infinite medium, and explicit, closed form expressions are obtained for the
magnetoelectric Eshelby’s tensors. The magnetoelectric Eshelby’s tensors can be readily used in the solution
of numerous problems in the mechanics and physics of magnetoelectric solids.
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