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Abstract

Explicit expressions of magnetoelectric Green’s functions are obtained for a transversely isotropic medium exhibiting
coupling between the static electric and magnetic fields utilizing the contour integral representation. Four Green’s
functions exist which represent the coupled static electric and magnetic response to a unit point electric or magnetic
charge. The Green’s functions are applied to analyze the inclusion and inhomogeneity problems in an infinite magne-
toelectric medium, and explicit, closed form expressions are obtained for the Eshelby type tensors. The magnetoelectric
Eshelby’s tensors can be readily used in the solution of numerous problems in the mechanics and physics of magneto-
electric solids.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Green’s functions are one of the well-established tools in the solution of numerous problems in the
mechanics and physics of solids. Evaluation and application of elastic Green’s function in isotropic and
anisotropic media are included in the review article of Bacon et al. (1978) and the text of Mura (1987).
Application of Green’s function in condensed matter and solid state physics can be found in Doniach and
Sondheimer (1974) and Rickayzen (1980). The key contributions to the study of elastostatic Green’s
function were made by Freedholm (1900), Lifshitz and Rozentsveig (1947), Kroner (1953), Synge (1957),
Willis (1965), Mura and Kinoshita (1971), and Pan and Chou (1976). Recently, the electroelastic Green’s
functions for a piezoelectric solid were studied by Deeg (1980), Wang (1992), Chen (1993), Dunn (1994),
Dunn and Wienecke (1996), Akamatsu and Tanuma (1997), Michelitsch (1997), Gao and Fan (1998), and
Karapetian et al. (2000).

Most of the previous studies of Green’s functions for a medium with coupled-field behavior focused on
the piezoelectric solid where the elastic and electric fields are coupled. Very limited work has been directed
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toward the analysis of Green’s functions in the magnetoelectric solid where the static electric and magnetic
fields are coupled. Yet the magnetoelectric coupling has both theoretical and practical significance in solid
state physics and materials science. Though first predicted by Pierre Curie, magnetoelectric coupling was
originally thought to be forbidden because it violates time-reversal symmetry, until Laudau and Lifshitz
(1960) pointed out that time reversal is not a symmetry operation in some magnetic crystals. Based on this
argument, Dzyaloshinskii (1960) predicted that magnetoelectric effect should occur in antiferromagnetic
crystal Cr,O;, which was verified experimentally by Astrov (1960, 1961). Since then the magnetoelectric
coupling has been observed in single-phase materials where simultaneous electric and magnetic ordering
coexists, and in two-phase composites where the participating phases are piezoelectric and piezomagnetic
(Van Run et al., 1974; Bracke and Van Vliet, 1981). Agyei and Birman (1990) carried out a detailed analysis of
the linear magnetoelectric effect, which showed that the effect should occur not only in some magnetic but also
in some electric crystals. Pradhan (1993) showed that an electric charge placed in a magnetoelectric medium
becomes a source of induced magnetic field with non-zero divergence of volume integral. Magnetoelectric
effect in two-phase composites has been analyzed by Harshe et al. (1993a,b), Avellaneda and Harshe (1994),
Nan (1994), Benveniste (1995), Li and Dunn (1998a,b), Li (2000), and Nan et al. (2001). Broadband trans-
ducers based on magnetoelectric effect have also been developed (Bracke and Van Vliet, 1981).

The Green’s functions for the magnetoelectroelastic solid have been studied by several authors. Chung
and Ting (1995) showed that the Green’s function for an elliptic hole or rigid inclusion in an anisotropic
elastic medium can be modified easily for an anisotropic medium with piezoelectric, piezomagnetic and
magnetoelectric coupling by extending the Stroh’s formalism to a ten-dimensional formalism. Kirchner and
Alshits (1996) obtained the fields in a wedge subjected to various boundary conditions in which the an-
isotropic elastic, piezoelectric, piezomagnetic, and magnetoelectric constants show an angular variation.
Liu et al. (2001) obtained Green’s functions for an infinite two-dimensional anisotropic magnetoelectro-
elastic medium containing an elliptical cavity. In this work, we study the Green’s function for a magne-
toelectric solid without piezoelectric and piezomagnetic coupling, which simplifies the analysis considerably
and allows us to obtain the explicit expressions.

Although virtually all magnetoelectric materials of practical significance are piezoelectric-piezomagnetic
composites with inherent electroelastic and magnetoelastic coupling, it is possible to fabricate such com-
posites without macroscopic piezoelectric and piezomagnetic effects by controlling the texture of the com-
posites, because they are forbidden in materials having a symmetry center. This could be accomplished by
randomly mixing piezoelectric and piezomagnetic phases at grain level to achieve center symmetry. In fact,
suppressing the macroscopic electroelastic and magnetoelastic coupling is desirable from the device point of
view, because it suppresses the associated macroscopic stresses and strains, which may complicate magne-
toelectric device design and operation. Explicit expressions for magnetoelectric Green’s function, which
could be used for the analysis of such materials, thus are desirable. In this work we derive the explicit ex-
pressions of magnetoelectric Green’s functions for a transversely isotropic medium exhibiting full coupling
between the static electric and magnetic fields utilizing the contour integral. The Green’s functions are then
applied to analyze the magnetoelectric inclusion and inhomogeneity problems in an infinite medium, and
explicit, closed form expressions are obtained for magnetoelectric Eshelby’s tensors. The Eshelby’s tensors
serve as cornerstone in the micromechanis modeling of heterogeneous materials with coupled-field behav-
iors, and can be readily used in the solution of numerous problems in the mechanics and physics of heter-
ogeneous solids.

2. Static linear magnetoelectricity

We consider a medium that exhibits linear, static, and anisotropic coupling between the electric and
magnetic fields, with the constitutive equations given by:
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D; = kyE, + a;H,,
(la)
Bi = ayE; + wyHi,
where D; and E; are the electric displacement and field; B; and H, are the magnetic flux and field; x;; and y;,
are the dielectric and magnetic permittivity; and a; is the magnetoelectric coefficient coupling the static
electric and magnetic fields. In the stationary case where there is no free electric charge and current, electric
displacement and magnetic flux satisfy the Gauss equations,

Di,[ = 0,

2
Bi,i = Oa ( a)

{322

where the subscript ““,i”” is used to denote a partial differentiation with respect to x;. The electric and
magnetic fields, on the other hand, can be derived from scalar electric and magnetic potentials,

E = d)ﬁia (321)
H;, = —¢ ;-

While the electric potential ¢ has clear physical interpretation, the magnetic potential ¢ is introduced for

mathematical convenience.

In order to treat the electric and magnetic variables on equal footing, we introduce a short notation,
which is analog of that introduced by Barnett and Lothe (1975) for piezoelectricity. This notation is
identical to conventional indicial notation with the exception that both lower case and upper case subscripts
are used. Lowercase subscripts take on the range 1 — 3 as usual, while uppercase subscripts take on the
range 1 — 2, and repeated uppercase subscripts are summed over 1 — 2. With this notation, the magne-
toelectric field variables take the following forms:

VA VA S 8
and the magnetoelectric moduli are expressed as:
Kin J=1, M=1,
S R ey ()
W, J=2, M=2.

It is noted that the uppercase subscript 1 and 2 is reserved for electric and magnetic variables, respectively.
Under this notation, the constitutive equations, Gaussian equations, and gradient equations can be written
as:

~

2 = EipinZiin, (1b)
ZiJj = 0; (Zb)
Zy = Uy, (3b)

It is worthwhile to notice that X;;, Zy;,, U, and E v are not tensors, and transformation between different
coordinate systems must be performed on individual tensors according to corresponding tensor transfor-
mation laws.
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3. Magnetoelectric Green’s functions
3.1. Contour integral representation

The magnetoelectric Green’s functions Gyz(x — X') are defined through the following partial differential
equation

EiJMthMR,ni(X —x') +opé(x —x') =0, (5)

where d(x — x') is the three-dimensional Dirac delta function, and Jz is the generalized Kronecker delta.
They have the following physical interpretation:
( "): the electric potential at x due to a unit point electric charge at x’;

( ): the electric potential at x due to a unit point magnetic charge at x’;
G, (x — X'): the magnetic potential at x due to a unit point electric charge at x';

( ): the magnetic potential at x due to a unit point magnetic charge at x'.

Note that the magnetic charge, or magnetic monopole, is introduced for mathematical convenience, which
simplifies the analysis of magnetoelectric inclusion and inhomogeneity problems, as we show later on.

In order to determine the magnetoelectric Green’s functions Gyz(x — x’), we take the Radon integral
transform (Gel’Fand et al., 1966), f(z, o) = J [,/ (x)dS(x), on Eq. (5) (also see Bacon et al., 1978; Deeg,
1980; Dunn, 1994),

/ /[EijMnGMR,m’(X — X,) + 5JR5(X — Xl)] dS(X) = 07 (6)

where the transform space variables z and o are vector and scalar, respectively, and the integration is
performed over the infinite plane z - x = o. Denoting the Radon transform of Green’s function by G, and
using the following properties of the Radon transform,

[ [ x)ds = flaa—2-x),

[ [rmase =22,

Z-X=0

/ / 3(x)dS(x) = 8(x),

we can rewrite Eq. (6) as

~ PGyr(z,0 —z-X)
EiJMnZiZn B
Ot

+0;0(—2z-x)=0. (7)

Multiplying the inverse of K, (z) = E'UM,,Z,-Z,, at both sides of Eq. (7), we obtain

Gz, 00— 2-X') 4
o2 = Ko

(z)0(o — z- X'). (8)



J.Y. Li | International Journal of Solids and Structures 39 (2002) 42014213 4205

At
z
0 i
>
> |
L
m
Fig. 1. Relationship between vectors t, z, and z*.
Taking the inverse Radon transform
1 0*f(z, %)
=g [a— as(z) )
z]=1 Z-X=0
on Eq. (8), we obtain
1 _
Gunlx ~X) = g5 PRA@lz- (x - X)) ds(a). (10)

|z|=1

Setting x — x' = |x — X'|t, where t is the unit vector along x — x'-direction, and utilizing the property of
Dirac delta function, we obtain

Gunlx =) = g K@ 0] dS (). (11

|z|=1

The relationship between vectors z and t is shown in Fig. 1, with z* lies in the plane m—n normal to t, i.e.,
z* -t =0, and 6(z*) = /2. Utilizing the property of Dirac delta function again, we can rewrite Eq. (11) as

1

_ —1 * *
~8nx — x| lz:”KMR(Z )do(z"). (12)

GMR (X — X/)
Note that |z| = 1 in the integral represents a unit circle, which is the intersection of the unit sphere with
plane m—n, as shown in Fig. 1. It is analogous to the contour integral obtained by Synge (1957) for an-
isotropy elasticity, and that obtained by Deeg (1980) for piezoelectricity. In general, it needs to be evaluated
numerically.

3.2. Explicit expressions for transversely isotropic media

Now we consider a transversely isotropic medium, characterized by dielectric constants xj; = K
and xs3, magnetic constants p,; = f,, and py;, and magnetoelectric constants a;; = a, and as3; all other
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material constants are zero. The 2 x 2 matrix Ky, for the transversely isotropic medium can be expressed
as

K1 (zf —|—z§) + K33z§ ap (Z% + zg) + a332§
Km = 2,2 2 2,2 2 (13)
an(zi +z3) tanzy (2 +23) + faaz3
and its inverse can be represented by
oL 1 /111(2% "‘Z%) + #33Z§ _all(z% "‘Z%) - a332§ 14
Ky=—>=- 2 2 2 2 2 2 ( )
g g —a“(zl +22) — A33Zy K“(Zl +ZZ) + K33Z3
with
g = (kntty — a3)[Ai (2] +23) + z3)[Aa (2] + 33) + 23] (15)
and
2ay1a33 — K33ty — Kiifiss — \/(K33H11 + Kiifaz — 20111‘133)2 - 4(“%1 - Kllﬂn)(aga — K33fis3)
1 = 9
2(“?3 — K33/i33)
(16a)
2ana33 — Ks3ftyy — Kniflss + \/(Kazﬂn + ey — 2anas)’ — 4at — k) (@} — Knps)
2= .
2(“%3 — K33fi33)
(16b)

To simplify the evaluation of Green’s functions, we assume the source point is located at the origin,
x' = (0,0,0), and the observing point is lying in the x;—x; plane, x = (xy,0,x3), with tan 6 = x; /x;. Ex-
pressions for any other source and observation points can be easily obtained from the transversely isotropic
symmetry of the medium. For such configuration, the intersection between the unit sphere |z| = 1 and the
plane m-n is a unit circle represented by n} + 53 = 1, with #; = 0 corresponding to the plane m-n; see Fig. 1.
With no loss of generality, n, is chosen so as to coincide with a unit vector in the x,-direction. Thus we have

zy=mn,c080, z=1m, z3=—nsind. (17)
After introducing a complex variable { = 5, + i, = €/, we obtain

_+1/¢ -1/ _d¢
m = 7 M, = 25 dw—i- (18)

We can then express the integrals in Eq. (12) in terms of complex variable {, and evaluate them using
Cauchy’s residue theorem. With those transformation and when 6 # 0, g can be written as

 (K33pzy — a3,) sin* 0 _ _
g = 167 (I =41)hi (O)(1 = 42)ha(0), (19)

with
_ A;cos? 0+ sin® 0 + 4,

h[ - 4+2B[2+1, B[
©=¢ : (1 — 4;)sin’> 0

(20)

It is noted that if { is a root of 4,({) = 0, so are —{, 1/{, and —1/{, so in general, there are two roots, +y;,
with moduli less than unity, and two roots, £f;, with moduli greater than unity. Eq. (19) can then be
rewritten as
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_ 2 in
:meléﬁ““Qa_AM1_@X8—ﬁx@—ﬁxﬁ—ﬁx@—%» (21)
Substituting Eq. (21) into Eq. (12), we obtain
) CLuk(0)
e dc, 22
s —X)=Cf o e -
with
(1+ ) (€082 0+ pyy sin®0) — (1 — )’y MR =11
Lm:i_(Hﬁwmww+mm%+U%WmAW=” (23a)
e 42 ) —(1+ ) (an cos® 0 + ass sin 0)+(1-%an, MR=21
(1+ ) (k1 cos? 0+ kysin® 0) — (1 = )iy, MR =22
and
o 2 . (23b)

i [x| (K33 133 — a33) sin® O(1 — A1) (1 — 45)

Notice that the limiting case = |B;] = 1 cannot occur because g # 0 for z # 0 (Willis, 1965), and the
integrands are never singular on the contour of integration |z| = 1. Now define

CLux(0)

tr(() = 5 (24)
(&= B(E = B2)
which is analytic inside |{| = 1 since |$,| > 1, Eq. (22) can be written as
! tMR(C)
Gunl(x —X) = C ]{ dc (25)
o1l (&= ) = 1)
and finally, according to Cauchy’s residue theorem, the Green’s function can be evaluated as
, 4 tr (1) — e (7
GMR(X o X) _ MR(/{I) MR(/{Z) ) (26)

7| (133 iy — a23) sin* (1 — 4,) (1 — 4) (3 = 1)

Expression for 6§ = 0 can be obtained as limiting form of the above expressions (Willis, 1965). Finally, we
note that for isotropic media, in which 4, = 4, = 1, and K}, does not depend on z, we can evaluate the
contour integral in Eq. (12) directly.

4. Magnetoelectric inclusion and inhomogeneity problems
4.1. Magnetoelectric inclusion problem

The magnetoelectric Green’s functions can be used to solve the inclusion and inhomogeneity problems in
a magnetoelectric solid. Adopting Mura’s (1987) terminology, we denote an inclusion as a subdomain Q2 in
an infinite matrix D with the same magnetoelectric moduli E ki as that of the matrix, but undergoing an
eigenfield Z;,. An inhomogeneity is a subdomain €2 in an 1nﬁn1te matrix D with a different magnetoelectric
moduli, E/ Lkl from that of the matrix, E k. The eigenfield Z, in the inclusion, for example, can be caused
by the spontaneous electric polarization and magnetic moment, which occur during a crystallographic
phase transformation. It is that which would occur if Q were unconstrained by D. Actual constrained
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magnetoelectric field inside the inclusion is in general a function of material moduli of the matrix, the shape
and orientation of the inclusion, and the distribution of eigenfield in the inclusion. The disturbance field
caused by an inclusion or inhomogeneity is known as the depolarization and demagnetizing field.

With the presence of an eigenfield Z},, the constitutive equation and equilibrium equation for the in-
clusion need to be rewritten as

%y = En(Zun — Z3,) (27)
and
E\'iJMrtZMn.,i = EiJMnZ;[n, (28)

From Eq. (28), it is found that EpnZ? s functions as electric charge and magnetic monopole. While
E, JMnZ - 1s finite within inclusion €, it behaves as a delta function across inclusion surface 092, which is
equivalent to a thin layer of concentrated charges around 0€, representing a jump in Z =E, vnZyy, ACTOSS
this boundary, [X]]. The overall effect, therefore, is represented by the additional flux actlng on Q over its
boundary 0Q, g; = n; [ZT] —n; Z, .» where n; is the unit surface normal pomtlng outward The resulting
electric and magnetic potentials in the infinite body D are then produced by Ejj,Z v, distributed within
inclusion Q, and the flux ¢;(x) acting upon inclusion surface 0,

X) = //GMJ(X—X’)ZLT,(X’) ///GMJ x —x)2L L (xX)dV(x), (29a)
o0

which can be simplified by Gauss theorem,

. / / / Guurs(x = X)Z5(x) AV (x). (29b)

The magnetoelectric field can then determined to be

Unn(x ///GM,,,, —x) 2L (x)dV(x). (30)

From the analysis we find that although the magnetic charge, or magnetic monopole, does not exist, it can
be conveniently used to represent the discontinuity of magnetic moment at the inclusion boundary, thus
help to solve the inclusion problem in a magnetoelectric medium.

In order to determine the magnetoelectric field due to the eigenfield in a inclusion from Egs. (29a), (29b)
and (30), we need the derivatives of Green’s functions. To this end, we differentiate Eq. (10) to obtain

Guri(x —X') = 812 ﬂz K,, ( )& [z (x —x')]dS(z) (31)
[z=1]
and
Gurin(x —X) = % ﬂziz,,KA;}e(z)é” [z-(x —x')]dS(z). (32a)

[z=1|

Defining V2 = 9% /dx, 0x,, and taking into account the fact that z,z, = 1, we can rewrite Eq. (32a) as

Guyin(x —X') = éVf ﬁz,-z,,K,;,}é[z - (x —x')]dS(z), (32b)

[z[=1
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with which Eq. (30) can be rewritten as
Uy a(X) = 32 ﬂz,z,, MJIVZ/// (x —x)]dV(x')dS(z). (33)
[z]=1

Eq. (33) is valid for any arbitrary material symmetry, inclusion shape, and eigenfield distribution.
4.2. Magnetoelectric Eshelby’s tensors

To carry on the analysis, let us consider a uniform eigenfield in an ellipsoidal inclusion, specified by

0\’ o\’ 4\’
a as as

where a;, a», and a3 are the dimensions of the inclusion in the x}-, x}-, and x}-directions, respectively.
Making the following scaling, 7} = x/a; (no summation on i), we can rewrite the ellipsoidal equation (34a)
as

‘6,12 + ,5/22 4 ng < 17 (34b)

with which we obtain

/// -(x = x)]dV(x) alam///a (t — 7)) d7|7)7, (35)

where s = k/u is a unit vector in the direction of k; = a;z; (no summation on #). To evaluate the integral in
Eq. (35), let us consider a point x inside the inclusion so that |z| < 1, and write 7' = Tu + Qs, withu-s = 0,
and Q =s - 1; see Fig. 2. Eq. (35) is then reduced to

[ [ [zt o= xnare) = 23444 [ fo-muiaz i, 56

7] <1

Fig. 2. Relationship between vectors s, 7, and T.
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Thus the volume integral over |tv/| <1 is reduced to the integral over a plane circular region of radius

V1= 0% =1/1—(s-1)* perpendicular to s,

/Tll/é[—Ts,.uf]df’lr’zf’g:/02" /Odewazn(l—Qz):nll— (%ﬂ (37)

With Eq. (37), the magnetoelectric field inside the inclusion is reduced to

7 ﬂ zz,K;, 1 dS(2), (38)

[z/=1

ajaxas

UM,n(X) - 47'[,[13

which does not depend on the position x, and thus, is uniform inside the inclusion, valid for ellipsoidal
inclusions embedded in a magnetoelectric medium with any anisotropy. The Eshelby’s tensor can then be
defined as

ZMn = SMnAbZ,}/ﬂ (39)
with
NS a axas = -1
Shinap = */ / /GMJ,M(X —X )EiJAb dV(X) = WEIJAb ﬂziZnKMJ dS(Z)- (40)
Q |z|=1

By the following variable transformation, d¢; = a;dz;/u (no summation on i), we obtain
1 ~ 1 2n
Shinab :_EiJAb/ / Zz'ZnKA}}deé}; (41)
47 1 Jo

with & =4/1 — é§ cosf and & =4/1 — é§ sin 0. Since z;z,K} is a homogeneous polynomial, we can use
z; = ;/a; in Eq. (41). Eq. (41) is valid for any material symmetry, and need to be evaluated numerically in
general. A numerical algorithm is given in Li (2000). For spheroidal inclusions embedded in an isotropic
medium, or cylindrical inclusions and penny-shape inclusions embedded in a transversely isotropic me-
dium, we have obtained the following closed form expressions of Eshelby’s tensor:

I Oblate spheroid in an isotropic medium: aa; = a; = a;, o > 1

1 [ 1 w2 tan~! (o2 — 1)/

)

S =9 =3 =g ==
111 1212 2121 M =S| + (o2 — 1)3/2

o? o tan~! (o2 — 1)"/?

Si313 = 8323 = a1 17"
II Sphere in an isotropic medium: a3 = oa; = aa,, oo = 1
St = Siann = Si313 = Sa121 = Soozn = Sy = 1/3.
IIT Prolate spheroid in an isotropic medium: a; = oa; = oa,, o > 1
afe(o? — 1) — tanh ™' (1 — 1/22)"?]
2(a2 — 1)°?

St = S22 = $2121 = S = )

1 atanh™'(1—1/02)"?
1 _ d2 (OCZ _ 1)3/2

S1313 = S2323 =
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IV Cylindrical inclusion in a transversely isotropic medium: a; — oo, a; = o
ol —1)

S = S = —5—=
w2 —1"

S S _oc—l
1212 = 8202 = "5~

V Penny-shape inclusion in a transversely isotropic medium: a3 — 0, a; = a,
Sz = Si3 = 1.

All other components are zero. It is noted that for the material symmetries and inclusion shapes con-
sidered, the Eshelby’s tensor is only a function of inclusion shape aspect ratio, and all the coupling terms
between electric and magnetic fields are zero. In other word, it does not depend on the material properties
of the matrix. Eshelby’s tensor is a very important and well-known concept in micromechanics, and its
extensive applications can be found in Mura (1987) and Nemat-Nasser and Hori (1993). In magnetic
context, it is related to the demagnetizing factor N.

4.3. Inhomogeneity problem

Once the solution for the ellipsoidal inclusion is obtained, the solution for the ellipsoidal inhomogeneity
easily follows. As shown by Eshelby (1957) in the elastic case, the inhomogeneity can be simulated by an
equivalent inclusion. To be specific, consider the infinite solid with moduli E vk that contains an ellipsoidal
inhomogeneity with moduli }AE': k- In the absence of an applied load, the fields in both the inhomogeneity
and the matrix are zero. When subjected to a far-field uniform load X¥,, the fields 2¥, + X9, in the inho-
mogeneity can be written as

Z?/ + Z:j/ = E:‘JMN (Zl(l)/fn + Z}?/In) = EUM" (ZJ?/[n + Zl(lj/fn - Z;/In) (42)

In Eq. (42), Z), is the uniform field that would exist in the absence of the inhomogeneity, and Z¢, is the
disturbance of the uniform field due to the presence of the inhomogeneity, or the so-called depolarization
and demagnetizing field. The first right-hand side of the equation represents the fields in the actual inho-
mogeneity; the second one represents the fields in an inclusion of the same shape and orientation as the
inhomogeneity, but with an eigenfield Z;, , i.e., an equivalent inclusion. Simulation of the inhomogeneity by
an equivalent inclusion is possible when an appropriate Z;, can be found to enforce the second equality of
the equation, which gives

Zyy = _HA;J,'J(E:'JAI; - EiJAb)Zgbv (43)
with
Hipm = (E,/-JA;, - EiJAb)SAan + Eunin- (44)

From Egs. (43), (44), and (39), the concentration factor Ay, defined by Z%, + Z3, = AcaupZ', for a single
inhomogeneity embedded in infinite matrix easily follows as

Acaap = _SCdMnHA;:,iJ(E;JAh - EiJAb) + Lcans = Hcan + SCdMn/E\'A},],,-J(E;JAh - E‘iJAb)]_l~ (45)

The concentration factor is a key concept in the micromechanics modeling of the heterogeneous materials,
and is used extensively to predict the effective behavior and analyze the internal field distribution of het-
erogeneous materials. In the case where there is a prescribed eigenfield Z, in the inhomogeneity, i.e., an
inhomogeneous inclusion, the fields are

Z?/ + Z:lJ = E:‘JMN (Z](l)/[n + Z}(\l/[n - Z/CIn) = EiJM" (Z](l)/[n + Z;\j/[n + ZlC[n - Z;;n) = EUM” (Z}(\)/In + Z](\l/ln - Z;In)’ (46)
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with which the equivalent eigenfield Z;, can be solved to provide the fields inside the inhomogeneous in-
clusion.

The above results for the interior fields can be used to obtain the fields just outside an inclusion or
inhomogeneity by making use of the continuity conditions on Z, and the jump conditions on U), at the
inclusion-matrix interface (Lin and Mura, 1973; Dunn and Taya, 1993). The fields just outside the inclusion
can be expressed as

0 = X0 + Euki(— Epoun Zyg, Koo + Z3y), (47)

with Kjx = nnEyx and the interior fields ZS obtained by the approach discussed above.

Finally, we discuss some energy calculations. Consider a solid containing an inhomogeneity subjected to
far-field loads n;X?,. These loads would result in uniform fields X, in a homogeneous solid. The total free
energy of the inhomogeneity can be expressed as

W= % /D(Z?J + )Y, + U dy — /S m(U)+ U dv
:% /DZ?JU})JdV—i—% /Qz?,z;dr/— /S 2m(U) + U dv. (48)
The interaction energy between n;X?, and the inhomogeneity is then
AW =W —w° :% /QZS,ZjidV — /S 2mUsdy = —%zgz;;VQ, (49)

with the volume of inhomogeneity V, = (4/3)najaya;. The interaction energy is very important in the
studies of ferroelectric or ferromagnetic phase transformation and domain switching.

5. Concluding remarks

We have obtained explicit expressions of the magnetoelectric Green’s functions for a transversely iso-
tropic medium exhibiting coupling between the static electric and magnetic fields utilizing the contour
integral representation. The Green’s function is used to analyze the magnetoelectric inclusion and inho-
mogeneity problems in an infinite medium, and explicit, closed form expressions are obtained for the
magnetoelectric Eshelby’s tensors. The magnetoelectric Eshelby’s tensors can be readily used in the solution
of numerous problems in the mechanics and physics of magnetoelectric solids.
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